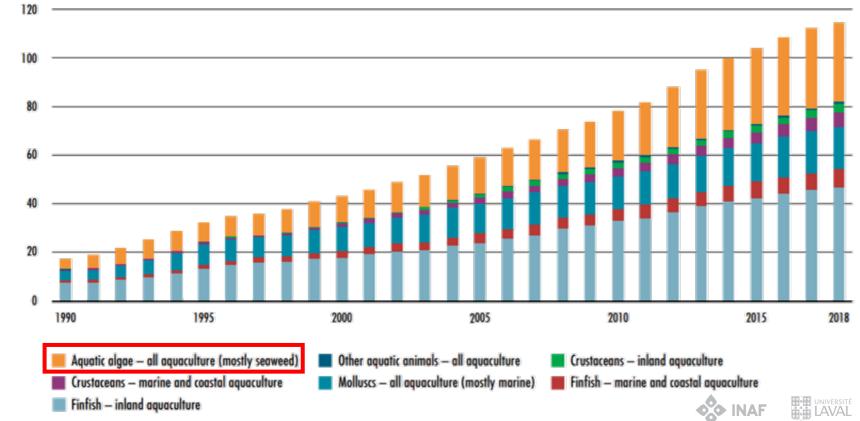


Algae and Edible-Insect Proteins: Challenges and Opportunities for the Biofood Industry

Lucie Beaulieu, Ph.D. Université Laval-INAF Alain Doyen, Ph.D. Université Laval-INAF


How to feed > 9.6 billion humans by 2050?

Edible algae (seaweed)

Figure 8 WORLD AQUACULTURE PRODUCTION OF AQUATIC ANIMALS AND ALGAE 1990-2018

WILLION TONNES (LIVE WEIGHT)

GLOBALALGAE PRODUCTION 35.1 million tonnes of aquatic algae (USD 16.5 billion)

MORE SUSTAINABLE FOOD SOURCE

Seaweed cultivation

- Seaweed farming doesn't require fresh water, pesticides, or fertilizer.
- The low environmental footprint of farmed seaweed makes it an important ingredient of the future food supply.

Journal of Cleaner Production 307 (2021) 127301

Environmental impacts of protein-production from farmed seaweed: Comparison of possible scenarios in Norway

resulted in a lower Global Warming Potential (GWP) and energy demand for seaweed protein than for soy protein.

Matthias Koesling ^{a, *}, Nina P. Kvadsheim ^b, Jon Halfdanarson ^b, Jan Emblemsvåg ^b, Céline Rebours ^b

^a NIBIO - Norwegian Institute of Bioeconomy Research, Department of Agricultural Technology and Systems Analysis, Gunnars Veg 6, 6630, Tingvoll, Norway ^b Møreforsking AS, 6009, Ålesund, Norway

MACROALGAE AS A SOURCE OF PROTEIN

The protein composition of macroalgae varies depending on :

- Species
- Season
- Geographic distribution
- Cultivation parameters (nutrients, temperature, light, drought,...)
- Processing (drying, bleaching, freezing, fermentation,...)

Coastal areas with low level of industrial activity allow seaweed farming

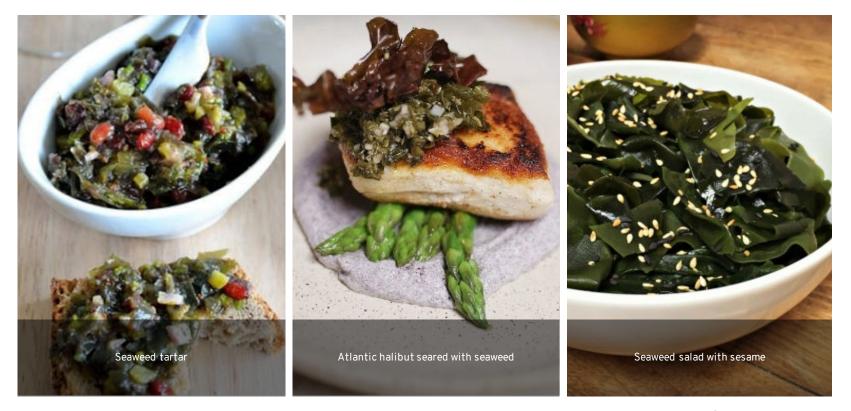
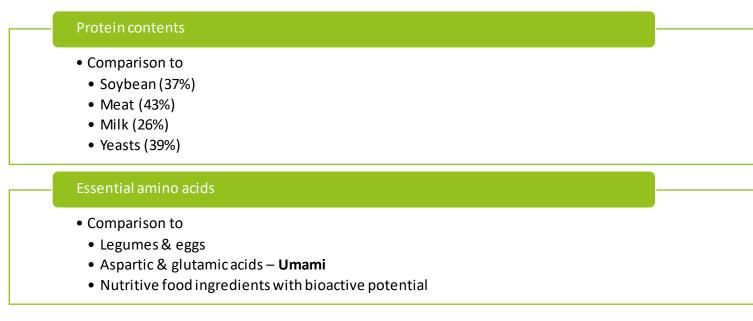

• No problem associated with the accumulation of heavy metals or pathogenic microorganisms

Photo:Merinov

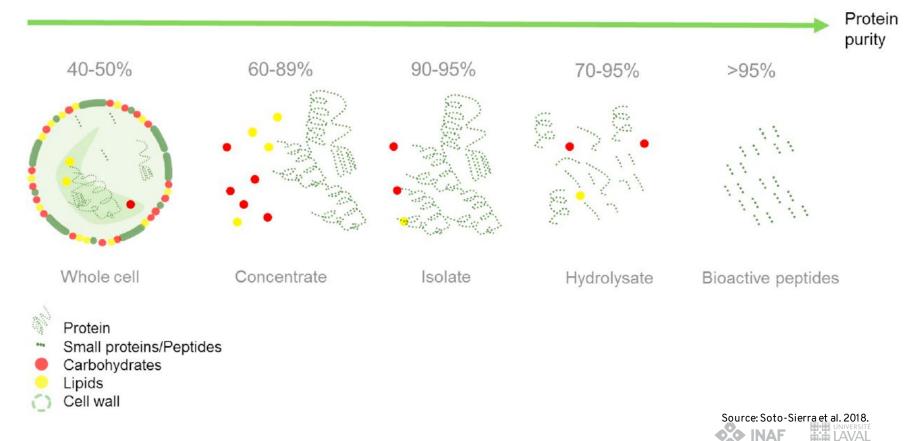
Are macroalgae good sources of protein?



EDIBLE MACROALGAE (SEAWEED)

MACROALGAE: ALTERNATIVE SOURCES OF PROTEINS

Up to 50% proteins



% = dry weight

Sources : Pereira, 2011; Soto-Sierra et al. 2018; Wells et al. 2017.

ALGAE-BASED PROTEIN PRODUCTS

EXTRACTION OF MACROALGAE PROTEINS

Factors affecting protein extraction into the cell wall:

- Rigidity
- Polysaccharides (fibres)
- Polyphenols

What about their digestibility and allergenicity?

Digestibility

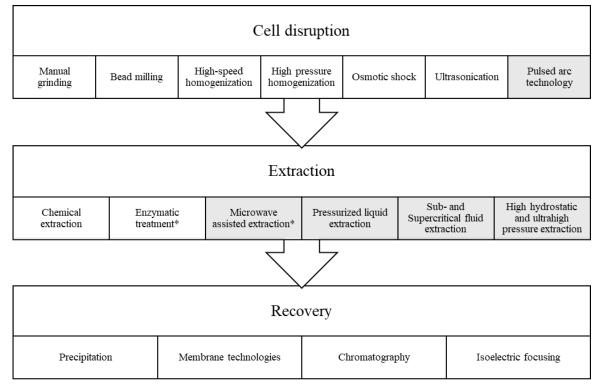
<u>Comparison to</u>

- Cereals (69-84%)
- Legumes (72-92%)
- Fruits (72-92%)
- Vegetables (68-80%)

Antinutritional factors

- Polyphenols linked to proteins and digestive enzymes
- Protein-bound polysaccharides (fibres)

Allergenicity


• Solely one case of food allergies to red (Nori) seaweed was reported.

Species	In vitro digestibility*
Red	83%-87%
Green	82%-86%
Brown	79%-82%

* Relative digestibility (%) compared to casein

HOW TO IMPROVE THE DIGESTIBILITY OF ALGAE PROTEINS?

Figure 6.1. Overview of the conventional and emerging methods (highlighted in gray) for protein and peptide extraction from algae. * Both enzymatic treatment and microwave assisted extraction could be considered as cell disruption methods.

Source: Tremblay & Beaulieu, 2021.

Howto incorporate macroalgae into your diet?

Source : Côté-Laurin et coll., 2016; CRIBIO, 2021

AROMA WHEEL AND SENSORIAL ANALYSIS

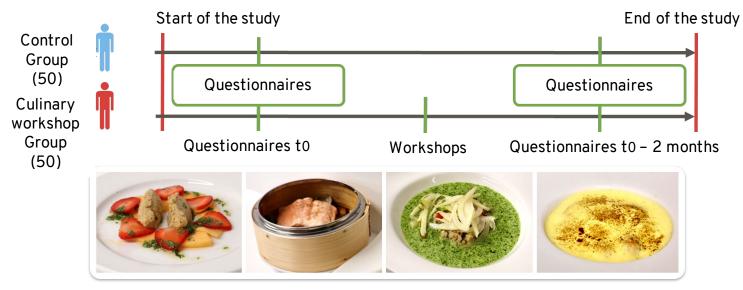
AGRICULTURAL AND FOOD CHEMISTRY

pubs.acs.org/JAFC


Review

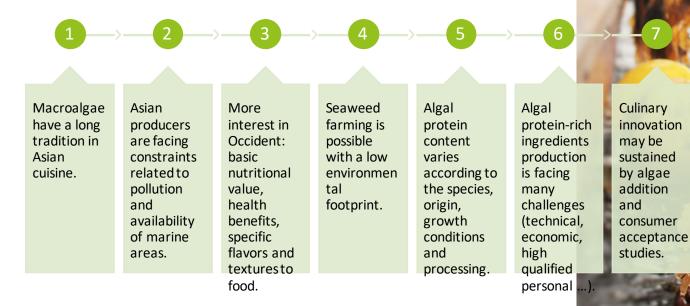
Algae as a Source of Natural Flavors in Innovative Foods

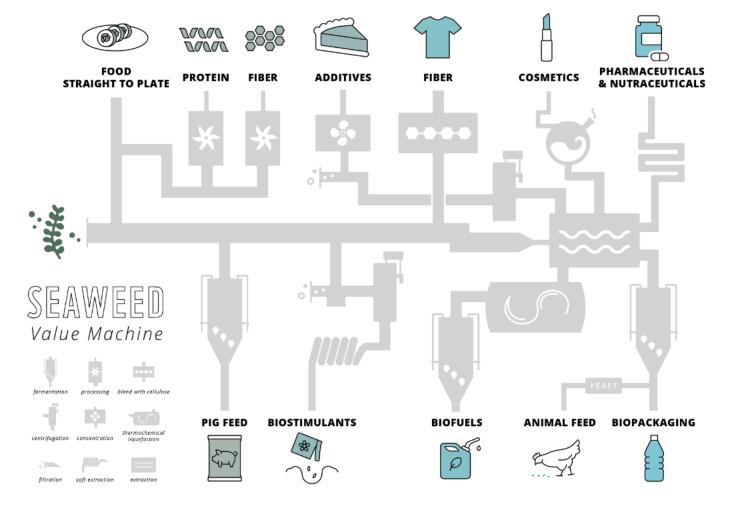
Nellie Francezon, Ariane Tremblay, Jean-Luc Mouget, Pamela Pasetto, and Lucie Beaulieu*



How consumers perceive macroalgae?

Increasing intention to eat seaweeds through culinary workshops with a chef: a randomized controlled study on Quebec consumers


Lafeuille, B., Turcotte, M., Tamigneaux, É., Berger, K., Beaulieu, L., Provencher, V. 2023. Food Quality and Preference. *Article in press*.



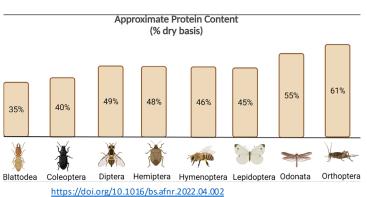
CONCLUSIONS AND OUTLOOK

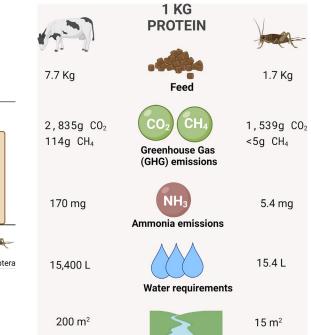
Macroalgae in the spotlight

©WWF-US / Katarina Jin with expertise from Oceanium

jniversité **AVAL**

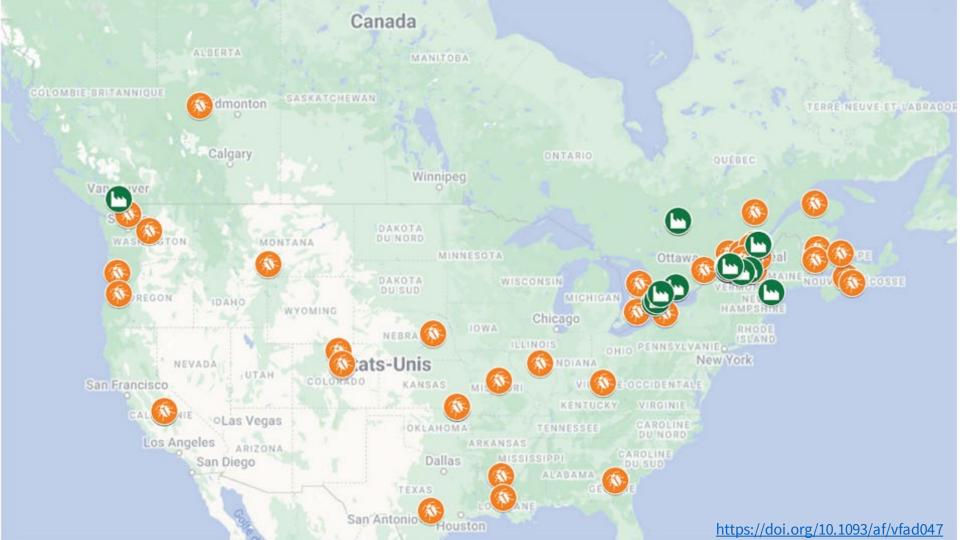
https://www.worldwildlife.org/industries/farmed-seaweed


Edible insects

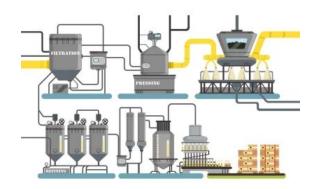


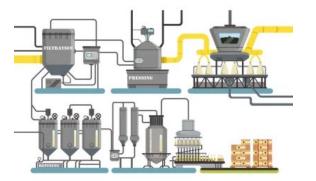

Land requirements

https://www.newvorker.com

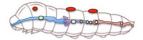


https://doi.org/ 10.3390/insects12060557





Edible insect: the choice of food processes


Table 2. Foodborne biological contaminants (bacteria and fungi) reported in edible insect species that pose a potential food safety risk. In the case only a genus name is mentioned, one or more species within that genus (other than a species that also may be listed) can be pathogenic.

Study	Insect species	Potential foodborne biological safety risks identified		
		Bacteria	Fungi	
Garofalo et al. (2019)	Alphitobius diaperinus Tenebrio molitor	Aeromonas, Bacillus, Pseudomonas Bacillus cereus group, Bacillus, Clostridium perfringens, Clostridium, Cronobacter, Escherichia coli, Listeria ¹ , Pseudomonas, Salmonella ² . Staphylococcus aureus, Staphylococcus, Vibrio, Versinia	Aspergillus flavus, Aspergillus, Penicillium Penicillium	
	Acheta domesticus	B. cereus group, Bacillus, C. perfringens, Clostridium, Listeria ¹ , Pseudomonas, Staphylococcus	Aspergillus	
	Locusta migratoria	Bacillus, C. perfringens, Pseudomonas, Staphylococcus, Yersinia	Aspergillus	
Kooh et al. (2019)	A. diaperinus		A. flavus	
	T. molitor	B. cereus group, C. perfringens, Clostridium		
	A. domesticus	B. cereus group, C. perfringens		
	L. migratoria	C. perfringens		
	Edible insects in general	Bacillus, B. cereus group, C. perfringens, S. aureus		
Murefu et al. (2019)	A. diaperinus	Bacillus, Clostridium	A. flavus, Aspergillus, Penicillium	
	T. molitor	Bacillus, B. cereus group, Clostridium, Escherichia, Listeria ¹ , Pseudomonas, Staphylococcus	Penicillium	
	A. domesticus	Bacillus, B. cereus group, Clostridium, Listeria ¹ , Staphylococcus		
	L. migratoria	Staphylococcus		
Cappelli et al. (2020)	A. diaperinus		Aspergillus	
	T. molitor	B. cereus group, Bacillus, C. perfringens, Clostridium, Listeria ¹ , Staphylococcus		
	A. domesticus	B. cereus group, Bacillus, C. perfringens, Clostridium, Listeria ¹ , Staphylococcus, Yersinia		

¹ Only the genus Listeria was detected so far. The pathogenic species Listeria monocytogenes has never been detected in edible insect species. ² Salmonella spp. were only detected by means of DNA-based analyses. Viable cells have not been detected so far.

https://doi.org/10.1016/j.ese.2023.100287

Surface + gut microbiota

Substrates used for insect rearing

		Rearing Substrates					
	Item	\$G	в	С	SG-C	B-C	SG Spent
_	No starvation						grains
	Total viable aerobic counts	7.08	7.63	6.46	6.84	7.77	
	Enterobacteriaceae	6.31	6.44	6.33	5.87	6.30	B Bread
	Staphylococci	3.85 °	5.96 ª	5.29 ab	4.38 b	5.19 ab	
	Yeast and molds	3.30 b	5.60 ª	6.31 ª	3.13 ^b	5.34 ab	C Cookies
)	Lactic acid bacteria	6.20	5.18	5.57	5.44	5.31 (
	Bacterial endospores	0.00 d	4.44 ab	3.44 b	2.05 °	5.32 ª	

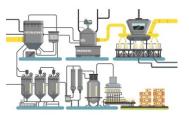
Thermal treatment: 90 à 100°C, <1 min to >5 min Decrease of the initial contamination and inhibition of enzyme activities

T. molito

Batch	Treatment	Microbial counts (log cfu/g)							
		Total aerobic count	Aerobic bacterial endospores	Entero-bacteriaceae	Lactic acid bacteria	Yeasts and molds	Psychrotrophic aerobic count		
1	None (Initial count) 10 s blanching	$7.9 \pm 0.3^{a, A}$ 3.5 ± 0.8^{b}	$2.6 \pm 0.3^{a, A}$ 2.8 ± 1.0^{a}	$7.3 \pm 0.5^{a, A}$ <1.0 ± 0.0 ^b	$7.4 \pm 0.2^{a. A} \\ < 1.0 \pm 0.0^{b}$	$\begin{array}{c} 3.8 \pm 0.5^{a, \ A} \\ < 2.0 \pm 0.0^{b} \end{array}$	7.2 ± 0.4^{aA} <1.0 ± 0.0 ^b		
п	None (Initial count) 20 s blanching	$\begin{array}{c} 8.2 \pm 0.7^{a, \ A} \\ 1.8 \pm 0.4^{b} \end{array}$	$\begin{array}{c} 2.8 \pm 0.4^{a. \ A} \\ 4.7 \pm 0.7^{b} \end{array}$	$\begin{array}{c} 7.5 \pm 0.6^{a, \ A} \\ < 1.0 \pm 0.0^{b} \end{array}$	$7.0 \pm 0.1^{a. B}$ <1.0 ± 0.0 ^b	$3.5 \pm 0.2^{a, A}$ <2.0 ± 0.0 ^b	$6.0 \pm 0.2^{a, B}$ <1.0 ± 0.0 ^b		
ш	None (Initial count) 40 s blanching	$7.6 \pm 0.4^{a. A}$ 2.0 ± 0.4^{b}	$3.1 \pm 0.1^{a, A}$ 2.3 ± 0.1^{a}	$7.1 \pm 0.9^{a, A}$ <1.0 ± 0.0 ^b	$6.9 \pm 0.2^{a. B}$ 1.5 ± 0.8^{b}	$3.5 \pm 0.4^{a, A}$ <2.0 ± 0.0 ^b	$\begin{array}{c} 6.5 \pm 0.6^{a, \ A, \ B} \\ < 1.0 \pm 0.0^{b} \end{array}$		

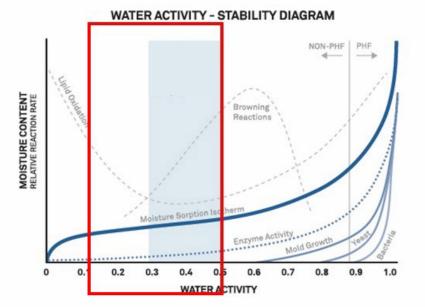
Specific bacteria and fungi encountered in processed insects (n = 19 isolates).

Species	Product	Findings
Acheta domesticus	Extruded	Bacillus cereus
Locusta migratoria	Dried	Proteus spp.", Mucor spp.ª
Alphitobius diaperinus	Dried	Penicillium spp.
Tenebrio molitor	Dried	Listeria ivanovii, Penicillium spp., Mucor spp.
Apis mellifera	Pollen	Coliforms, Serratia liquefaciens, Pseudomonas spp.
Hermetia illucens	Fat	Bacillus cereus, Aspergillus spp., Cryptococcus
		neoformans
	Powder	Bacillus cereus ^a
	Dried	Bacillus cereus
Musca domestica	Dried	Bacillus cereus

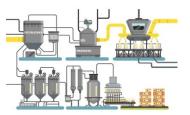

^a Two samples positive, otherwise only one.

Thermal treatment: large decrease of the microbial load

Persistence of foodborne and spoilage microorganisms


Necessary to optimize the process parameters

https://doi.org/10.1016/j.ijfoodmicro.2016.11.005

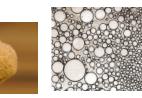


Treatment	Water activity (–)
Fresh	$0.95 \pm 0.00^{\rm a}$
Fluidized bed dried	0.54 ± 0.00^{b}
Microwave dried	$0.36 \pm 0.01^{\circ}$
Freeze-dried	0.24 ± 0.00^{d}
Vacuum dried	0.18 ± 0.01^{e}
Rack oven dried	$0.13 \pm 0.00^{\rm e}$

Stable products but potential autoxidation of unsaturated lipids

Thermal treatment

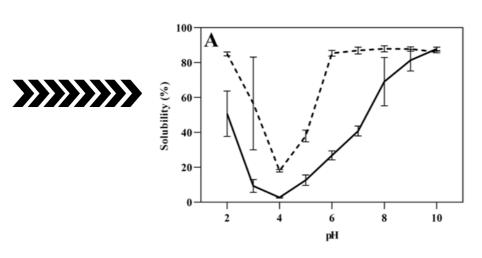
Drying



*

Treatment	Protein solubility (%)
Fresh	53.24 ± 0.37^{a}
Fluidized bed dried	19.25 ± 0.21^{d}
Microwave dried	12.65 ± 0.06^{f}
Freeze-dried	$40.65 \pm 0.21^{\circ}$
Vacuum dried	49.70 ± 0.12^{b}
Rack oven dried	14.10 ± 0.27^{e}

The development of high-added protein-rich ingredients



Edible insect protein concentrate and isolate (80-90% protein)

Protein concentrate and isolate

AdalbaPro Insect Protein Concentrate (IPC) A protein-packed powder suitable for a wide variety of applications

Home > Products > AdalbaPro Insect Protein Concentrate (IPC)

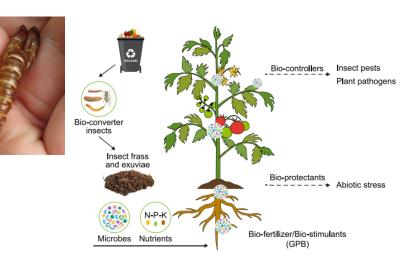
Valorization of other insect components

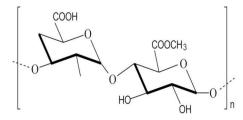
Consumers' perception of bakery products with insect fat as partial butter replacement

Claudia Delicato^{a,c}, Joachim J. Schouteten^{a,*}, Koen Dewettinck^b, Xavier Gellynck^a, Daylan A. Tzompa-Sosa^b

^a Department of Agricultural Economics, Ghent University, Coupure Links 653, Gent 9000, Belgium ^bDepartment of Food Technology, Safety and Health, Laboratory of Food Technology and Epätnering, Chent University, Coupure Links 653, Gent 9000, Belgium ^bDepartment of Medical and Sargia Genices, Liniversity of Pogia, Va A. Canastis 89:91, Fogia 7122, Italy

Journal of Cleaner Production 264 (2020) 121670




Insect margarine: Processing, sustainability and design

Check for updates

Sergiy Smetana $^{\rm a,\, *},$ Lars Leonhardt $^{\rm a},$ Saara-Maria Kauppi $^{\rm b},$ Aleksandar Pajic $^{\rm a},$ Volker Heinz $^{\rm a}$

^a German Institute of Food Technologies – DIL e.V., Prof.-von-Klitzing-Str. 7, 49610, Quakenbrueck, Germany ^b NTNU: Norwegian University of Science and Technology, NO-7491, Trondheim, Norway

Edible insects: the consumer acceptability

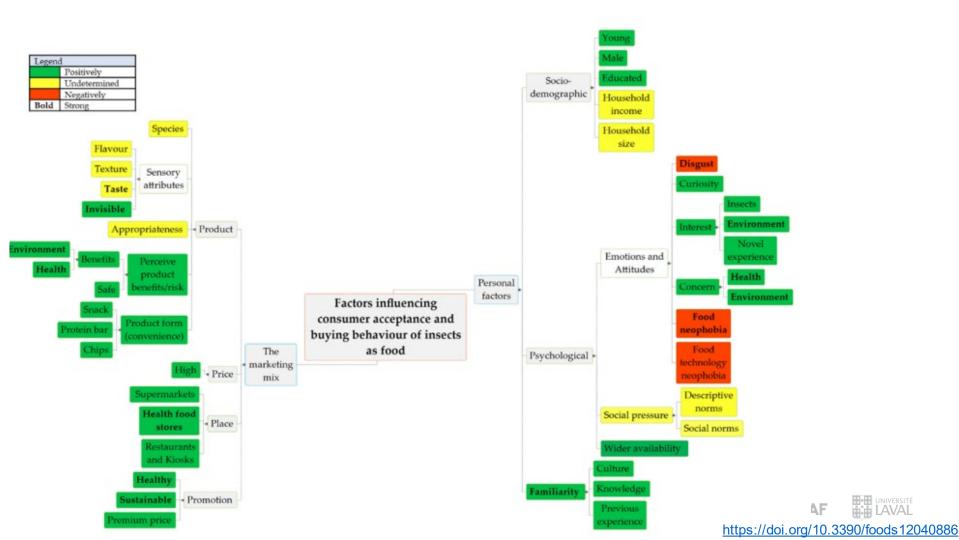
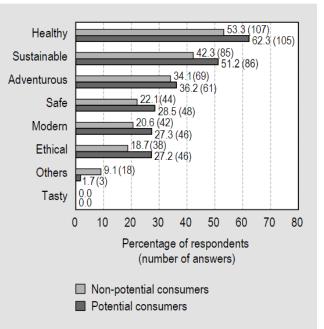
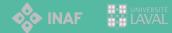



Table 1. Interview questions asked before (Q1-7) and after (Q8) the offer to taste and respective answers (n=149 if not stated otherwise).

Questions	Yes (%)	No (%)
Q1 Have you ever eaten insects?	26.17 (n=39)	73.83 (n=110)
If yes, which species and where? (see also Figure 2)		
Q2 Do you like to try new things?	87.25 (n=130)	12.75 (n=19)
Q3 Can you imagine to eat insects?	78.52 (n=117)	21.48 (n=32)
Whole	17.45 (n=26)	
Processed e.g. in a protein bar	18.79 (n=28)	
Or both whole and processed?	42.28 n=63)	
Q4 Do you consider insects as food of the future? (n=145)	71.03 (n=103)	28.97 (n=42)
Q5 Are insects a sustainable alternative to meat? (n=148)	67.57 (n=100)	32.43 (n=48)
Q6 Would you buy whole insects in a supermarket?	36.24 (n=54)	63.76 (n=95)
Q7 Would you buy processed insects in a supermarket?	64.43 (n=96)	35.57 (n=53)
Q8 Did you like the taste of the sample? (n=112) ¹	71.43 (n=90)	17.86 (n=20)

¹ No answer was received by two interviewees.

DOI 10.3920/JIFF2018.0041



DOI 10.3920/JIFF2017.0075

Conclusion

Edible algae and insects: emerging protein sources = a lot of challenges but numerous benefits

Need to develop collaborative research on these matrices to popularize their use

Specific emphasis on consumer acceptability

Education

Marketing

Taste

THANK YOU FOR YOUR ATTENTION

Lucie Beaulieu lucie.beaulieu@fsaa.ulaval.ca Alain Doyen alain.doyen@fsaa.ulaval.ca

